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Abstract
A method based on Variational Mode Decomposition (VMD) and Neural Hierarchical Interpola‐
tion for Time Series (N‐HiTS/NHITS) is proposed to improve the forecast accuracy of wind power.
Firstly, the VMD approach is adopted to decompose wind power signals into low‐frequency and
high‐frequency components, which are then used as the input for theNHITSmodel. Comparedwith
traditional forecast methods, this method based on VMD‐NHITS can adapt to wind power’s volatil‐
ity and randomness and achieve better prediction results. Finally, the performance of the proposed
forecast method is tested by using the wind power signal from an offshore wind farm in East China.
Whether evaluated by point forecast metrics or probability forecast metrics, the proposed forecast
method outperforms other forecasting methods in terms of prediction accuracy and reliability.
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1 INTRODUCTION

1.1 Background and Motivation

Wind power’s inherent volatility and randomness present significant
challenges for grid stability. According to the technical and functional
specifications outlined by the State Grid Corporation of China for wind
farm grid connection, there is a stipulation that wind farms must inte‐
grate a wind power forecast system into their operations. This system
is expected to exhibit ultra‐short‐termwind power forecast capabilities,
ranging from 15 minutes to 4 hours. High accuracy and low compu‐
tational time are essential benchmarks for assessing ultra‐short‐term
wind power prediction models.

1.2 NeuralNetworks inWindPower Fore‐
casting

Given the efficiency of neural networks in handling large‐scale data,
they have been widely used in predicting renewable energy systems.
This includes classic single‐method forecasts such as Convolution Neu‐
ral Network (CNN) Acikgoz (2022), Temporal Convolution Network
(TCN) Lin et al. (2021), Long Short Term Memory Neural Network
(LSTM)Ko et al. (2021), Gated Recurrent Unit (GRU) Li et al. (2020), trans‐
formerWu et al. (2022), and their variants. Additionally, there has been
a trend in recent years towards combining neural networks with other
methods into multi‐method forecast models. For instance, Flores et al.
combined GRU with data augmentation for wind speed forecasting Flo‐
res et al. (2021). Another study by Li et al. presented a spatiotemporal
directed graph CNN for multisite wind power prediction, highlighting
the advantages of deep learning in wind energy forecasting Li et al.
(2023). These advancements have made significant contributions to
data identification, enhancing forecast resolution, and testing generali‐
sation performance. However, they are still based on traditional neural
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networks and are not easily interpretable and applicable to renewable
energy practitioners. Thus, in recent years, time series introduced two
novel interpretable neural methods, Neural Basis Expansion Analysis
for Interpretable Time Series (N‐BEATS/NBEATS) Olivares et al. (2023)
and NHITS Challu et al. (2023) to improve the accuracy of forecasts.
They emphasise learning different scales of the time series, resulting
in improved performance. NBEATS differs from traditional approaches
that decompose time series data into trend and seasonality compo‐
nents. Instead, it directly incorporates the decomposition of trend and
seasonality into the model, enhancing the architecture to generate in‐
terpretable outputs without significantly sacrificing accuracy. NHITS is
an extension of the NBEATS model, which can improve prediction ac‐
curacy and reduce computational cost. This wavelet‐inspired algorithm
combines the forecasts made at different time scales, considering both
long‐term and short‐term impacts when generating the predictions,
called hierarchical interpolation.

1.3 Wind Power Decomposition

Time‐series forecast methods such as NBEATS and NHITS gain insights
into underlying patterns, trends, cycles, and seasonal effects. However,
they do not provide much understanding of wind power’s volatility and
randomness characteristics. When it comes to ultra‐short‐term wind
power forecasts, their capability to capture instantaneous changes is
limited.
Therefore, SD approaches are introduced to solve the problem of

ultra‐short‐term wind power forecasting. While low‐pass filtering Sun
et al. (2019), Liao et al. (2022), wavelet analysis Liu et al. (2019), and
wavelet packet decomposition Dolatabadi et al. (2020) were previously
common for wind power decomposition, techniques like EMD (Empiri‐
cal Mode Decomposition) and its variants are now widely used. These
methods excel in forecasting different frequency components of wind
power due to their ability to handle nonlinear and nonstationary signals,
as well as their effectiveness in multi‐scale analysis. This makes them
powerful tools for signal decomposition and feature extraction tasks.
For instance, Shen et al. proposed a method using Ensemble Empirical
Mode Decomposition (EEMD) and a Savitzky‐Golay (SG) filter, with pre‐
dictions made by LSTM and ARIMA models for wind speed Shen et al.
(2021). Although these methods effectively capture the deep temporal
features of wind speed time series, they still face challenges in mode
mixing and noise robustness when dealing with real‐world complex non‐
stationary signals. To further improve the accuracy of predictions and
provide better control over the decomposition process, the introduction
of VMD becomes particularly important. VMD reduces mode mixing
and enhances noise robustness, offering significant advantages for han‐
dling complex nonstationary signals. For example, Han et al. improved
multi‐step wind power predictions by decomposing wind power data
into three modes—long‐term, fluctuation, and random using VMD and
LSTMHan et al. (2019ab). The advantage of using VMD is that it allows
for the pre‐specification of mode number, which is especially valuable
in applications where prior knowledge of the signal is available.

1.4 Contributions

In this paper, we propose a novel VMD‐NHITS‐based forecast method
drawing upon wind power frequency distribution and energy concen‐
tration characteristics for ultra‐short‐term wind power forecasting. It
first utilises VMD to decompose wind power into low‐frequency and
high‐frequency components, and then neural networks are employed
for point prediction and probability prediction of each component. Fi‐
nally, the predicted results for the components are combined to obtain
the final wind power forecasts.
The main contributions of this paper are as follows:

1. A novel wind power forecast method based on VMD‐NHITS is pre‐
sented, which provides deliberate intervention in understanding
wind power data by using the VMD approach before feeding data
into a neural network for prediction. This intervention expedites the
optimization procedure, thus enhancing the model’s forecast ability.

2. Unlike relying only on a single forecast method, this method in‐
tegrates low‐frequency component point predictions with high‐
frequency component probability predictions to get final prediction
results. This integration reduces the uncertainty in wind power fore‐
casts, which can help facilitate more effective scheduling plans and
standby strategies and enhance the overall stability and reliability of
the power grid.

This paper is organised as follows. Section 2 describes the problem
and the limitations of only using the NHITS method. In Section 3, the
proposed forecast method based on VMD‐NHITS is elaborated in detail.
Section 4 compares the proposed novel method with previous methods
from different evaluation aspects. The conclusion including work and
prospects is presented in Section 5.

2 PROBLEM STATEMENT

As the installed capacity of renewable energy sources continues to
increase, the evaluation criteria for power forecasting are gradually
becoming stricter. Taking the offshore wind farm in this paper as an
example, the generation management and implementation rules in this
area stipulate that when the ultra‐short‐term power forecasting accu‐
racy can not reach 85% by daily assessment, the penalty fee is:

F = (0.85 – A)× C× 0.2× 0.25× Pr

where F represents the penalty fee, A is the accuracy which is calculated
using the Root Mean Square Error (RMSE), C is the installed capacity,
0.25 is the technical management assessment coefficient for this area,
and Pr represents the highest approved grid‐connected electricity price
of the generation. Improving the prediction accuracy of wind power can
enhance the efficiency of wind farms and reduce the cost of standby
capacity on the grid side, which has significant social and economic ben‐
efits. NHITS has been well used to increase the interpretability of the
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neural network structure and improve the prediction accuracy and com‐
putational efficiency. However, this approach essentially obtains the
components of different frequencies in the time series by changing the
sampling rate (Explained in detail in Section 3). Thus, in order to improve
the accuracy, this paper proposes to use the VMD approach for time
series decomposition before inputting the training data into the neural
network. The time series is decomposed into low‐frequency and high‐
frequency sequences in advance, which allows subsequent neural layers
to better extract features and improve accuracy.

3 PROPOSED ARCHITECTURE AND
METHODOLOGY

An overview of the proposed method consists of four steps. First,
the module uses VMD to decompose wind farm output power into
low‐frequency and high‐frequency components. Then, it is to train an
NHITSmodel with low‐frequency component inputs to obtain point pre‐
dictions for the low‐frequency components. Meanwhile, it is to train
another NHITS model by using high‐frequency component inputs to
generate probability predictions for high‐frequency components. Fi‐
nally, the two components are aggregated to obtain the probability
prediction of the final wind power. The procedure of the method is
illustrated in Figure 1.

Wind power signals for the past 4 days

Low-frequency component High-frequency component

NHITS model 1 NHITS model 2

Point forecasts for 

the next 15 minutes

Probability forecasts for

 the next 15 minutes

SD

Wind power forecasts for the next 15 minutes

Aggregate

1. Wind Power Decomposition Module

2. Low-frequency Component Point Forecast Module

3. High-frequency Component Probability Forecast Module

4. Forecasts Output Module

1.

2. 3.

4.

F I GUR E 1 Four steps of the forecast method.

3.1 Wind Power Decomposition Module

Wind speed influences wind power generation primarily. The slow varia‐
tion in wind speed causes the low‐frequency component of wind speed,

while the instantaneous changes in wind speed and irregular wind
flow induce high‐frequency components. Therefore, the energy of wind
power is dominated by low‐frequency components. The amplitude‐
frequency characteristic curve of the offshore wind farm output is
shown in Figure 2.
This figure confirms that wind energy is mainly dominated by low‐

frequency components, specifically with a remarkable concentration of
99.77%within the 0 to 0.2mHz range. Therefore, wind power can be de‐
composed into low‐frequency and high‐frequency components, which
can be processed separately. In this paper, VMD, with its advantages
in accuracy, noise robustness and computational efficiency Eriksen and
ur Rehman (2023), is employed as the SD approach. In essence, VMD
is a multiple adaptive Wiener filter bank and the optimisation problem
of VMD can be expressed as an energy minimisation problem, the goal
of which is to find a set of IMFs so that their energies are dispersed as
much as possible across different frequency ranges while maintaining
the overall structure of the signal. Specifically, the optimisation problem
of VMD can be expressed as follows:

min
u,h

K∑
k=1

∥∥∥∥∥x –
K∑

k=1

uk ∗ qk

∥∥∥∥∥
2

2

+ λ

K–1∑
k=1

∥fk – fk+1∥22

where x is the given time series; u = [u1, u2, . . . , uK] represents a set of
Intrinsic Mode Functions (IMFs), K is the number of IMFs, uk is the signal
of the k‐th IMF; q = [q1, q2, . . . , qK] is a set of orthogonal filters, where
qk is the filter corresponding to the k‐th IMF; λ is a regularization param‐
eter balancing the trade‐off between data fitting and smoothing; fk is
the frequency of the k‐th IMF obtained through the Hilbert transform.
When K=2, Pk is decomposed into two components, one is the

low‐frequency component P1 and the other is the high‐frequency
component P2.

3.2 Low‐frequency Component Point
Forecast Module

In the forecasting model, a sliding window is used to form a multi‐
dimensional sample. The sliding window width is represented as W,
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F I GUR E 2 Amplitude‐frequency characteristics of wind power.
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encompassing a lookback period horizon of L and a forecast period hori‐
zon of H. Instead of applying VMD to the overall dataset, we perform
VMD individually on the training data for each prediction model. This
ensures that temporal information from the validation set is not leaked
during the decomposition process, thereby maintaining the integrity of
our time series prediction. In every forecasting model, wind power is a
one‐dimensional time series, so it can be denoted as Pt–L|t+H . This win‐
dow will move forward along the historical wind power series by a time
step, forming a sample with each slide. The sliding window of signals
is shown in Figure 3. The low‐frequency component is relatively stable

Move Forward

Lookback Period

Horizon = L

Forecast Period

Horizon = H

W

tSliding Window

Time

Power

F I GUR E 3 Sliding window of signals.

and predictable. In such cases, point forecasts can effectively capture
the expected future value without the need for additional complexity
or uncertainty measures and Huber Loss is used as the loss function.
Since point forecast does not involve probability distributions or ranges,
the calculation process is relatively simple, resulting in higher computa‐
tional efficiency. The structure of NHITS to handle the low‐frequency
component is depicted in Figure 4.

F I GUR E 4 The structure of NHITS.

The input component Pt–L:t1 is divided into sub‐time series with
different periods by using different expressiveness ratios in different
stacks. A low expressiveness ratio captures long‐term trends, while a
high expressiveness ratio captures short‐term fluctuations. With the
layered approach, NHITS can simultaneously consider more detailed
low‐frequency information and integrate this information into the fore‐
casting process.
The stack is implemented by several blocks. The purpose of the stack

being divided into blocks is to learn the basis functions of different char‐
acteristics. The lookback output is subtracted from the input of the next
block so that the next block can analyse the remaining signal more in‐
tently. It amplifies the attention of the next block to signals outside
the frequency band that have already been processed. All of the block
forecast outputs are combined to form the stack forecast.
The Block l in Stack s uses a MaxPool layer with kernel size ks,l to cut

small‐time‐scale components from the previous block residual Pt–L:t1,s,l–1,
which can be indicated as

Pt–L:t1,s,l,(p) = MaxPool
(
Pt–L:t1,s,l–1, ks,l

)
When ks,l is increased, it potentially results in a shorter input for theMLP
Pt–L:t
1,s,l,(p). It is called multi‐rate signal sampling.
By using non‐linear regression with a hidden vector, symbolized as

hs,l, themodel gets forward and lookback interpolationMLP coefficients
θfs,l and θ

b
s,l,

hs,l = MLPs,l
(
Pt–L:t1,s,l,(p)

)
θfs,l = LINEAR

f (hs,l)

θbs,l = LINEAR
b (hs,l)

Since downsampling has been realized through the MaxPool layer, the
forecast output will be less than the target Horizon, so a hierarchical
interpolation is required on the prediction results to make the forecast
sequence length reach H. Here the method uses the linear interpolator
g, which is defined as

g(τ , θ) = θ [t1]+
(
θ [t2] – θ [t1]

t2 – t1

)
(τ – t1) , t1 = arg min

t∈T :t≤τ
τ–t, t2 = t1+1/rl

The Block l produces forecast output P̂t+1,t+H
1,s,l and lookback output

P̃t–L:t1,s,l . The input of the next block l+1, described as Pt–L:t1,s,l , derives from
Pt–L:t1,s,l–1 and P̃

t–L:t
1,s,l :

Pt–L:t1,s,l = Pt–L:t1,s,l–1 – P̃
t–L:t
1,s,l

The forecast output of Stack s is assembled by summing the B block
forecasts,

P̂t+1,t+H
1,s =

B∑
l=1

P̂t+1,t+H
1,s,l

Finally, themodel output is assembled by summing the S stack forecasts,

P̂t+1,t+H
1 =

S∑
s=1

P̂t+1,t+H
1,s



Wind Power Forecasting Based on Variational Mode Decomposition and Neural Hierarchical Interpolation 5

3.3 High‐frequency Component Probabil‐
ity Forecast Module

It has been mentioned that the instantaneous changes in wind speed
and irregular wind flow induce the high‐frequency component of wind
power. This results in wind power having higher randomness and unpre‐
dictability, leading to significant errors in point forecasts. Therefore, a
probability forecast is adopted to address this issue. The high‐frequency
component probability forecast module is almost the same as the
low‐frequency component point forecast module except for utilising
Multi‐Quantile Loss as the loss function.

3.4 Forecasts Output Module

After finishing training the point prediction model and the probability
model, the forecasts of low‐frequency and high‐frequency components
an be represented as P̂1, P̂2,lo, P̂2,up, P̂2,m, where P̂1 is the point fore‐
cast for the low‐frequency component, P̂2,lo and P̂2,up is the lower and
upper bounds of the high‐frequency component forecasts, and P̂2,m is
the median of the high‐frequency component forecasts. The last step is
to aggregate the point forecast of low‐frequency components with the
probability forecast of high‐frequency components to obtain the final
prediction results, including lower bounds P̂lo, upper bounds P̂up and
the median P̂m. Finally, this paper introduces five metrics for a compre‐
hensive evaluation, two of which are metrics for point forecast, and the
others for probability forecast Wan et al. (2014):

1. Calculate the Mean Squared Error (MSE) and Mean Absolute Error
(MAE).

2. Calculate the Average Coverage Error (ACE), Prediction Interval
Averaged Width (PIAW) and Winkler Score (WS).

In the evaluation, the smaller themetrics, the better the performance.
Meanwhile, the Wilcoxon Signed‐rank Test is also adopted to evaluate
the statistical significance of the differences inmodel performance, with
a significance level typically set at 0.05. The framework of the method
is shown in Figure 5.

4 CASE STUDY AND ANALYSIS

4.1 Dataset Preparation and Parameters
Settings

The wind power and SCADA data used in this paper from January to
May 2022were collected from an offshore wind farm in East China. The
wind farm consists of 72 units of 4MW wind turbines, 1 unit of 6MW
wind turbine, and 1 unit of 7MWwind turbine, with a total installed ca‐
pacity of approximately 300MW. The timestamps of the dataset start
from ”2022‐01‐01 11:10:00” and endwith ”2022‐05‐31 10:45:00”, con‐
taining 207022 sampled points at a temporal resolution of 1 min. All the

F I GUR E 5 Framework of the method.

SCADA data of the wind turbines in the wind farm are input into the
neural network for training and testing. In that case, it will require a large
amount of parameter calculation and consume a significant amount of
computing resources. Therefore, based on the spatial layout of the wind
turbines in the offshore wind farm, this paper selectively retains a part
of turbines’ wind speed data. Due to missing data for turbines 1‐32 and
a malfunction in turbine 54, the data from turbines 39, 45, 53, 55, 56,
60, 64, 68, and 72, a total of nine turbines, are chosen for processing.
The layout of the wind turbines in the offshore wind farm is shown in
Figure 6.
This paper implements the experiments on a 64‐bit PC platformwith

an Intel Core‐i7 CPU at 3.60GHz and an NVIDIA GeForce GTX 1650
GPU to deal with all models. The overall model training, validation, and
testing are implemented on the PyTorch deep learning framework by
Python 3.9.
In this work, a neural network model is periodically trained every

15 minutes. The model is fed with scaled data from the last 4 days for
training. Here, the forecast period horizon H is set to 15 minutes and
the lookback period L is set to 2 days. The length of testing data is
the same as the forecast period H. The model’s maximum step is set to
1000, and an early stopping mechanism is implemented with a patience
setting of 2 steps during the model’s training. The point forecast of
the low‐frequency component and the probability forecast of the high‐
frequency component will be superimposed after respective inverse
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F I GUR E 6 Turbine layout of the wind farm.

normalisation to get the final prediction results. Due to the large volume
of data, the subsequent will only display a typical 12‐hour period.

4.2 Benchmark Models

Several classic and advanced forecastingmodels are employed as bench‐
marks to further evaluate the ultra‐short‐term wind power prediction
superiority based onVMD‐NHITS. Sequencemodelling has always been
synonymous with Recurrent Neural Networks (RNN) in deep learning.
GRU, LSTM, and BiLSTM are all RNN variants and exhibit similar pre‐
diction accuracy, but GRU is superior for its simple structure and lower
computational complexity.
In recent years, several papers have shown that simple convolutional

architectures, like TCN, can outperform RNN by demonstrating longer
effective memory. TCN applies the causal convolution filters to larger
time spans by skipping temporal connections while remaining compu‐
tationally efficient Bai et al. (2018). Thus, this paper chooses TCN and
GRUcombinedwith low‐pass filtering and SDapproaches as benchmark
models for comparison.

4.3 Results Analysis and Discussions

4.3.1 Compare single neural forecast
models with or without SCADA data

First, the neural network probability forecast of wind power is carried
out without SD approaches, and the fitting effect of TCN, GRU, NBEATS
and NHITS models with or without SCADA is shown in Figure 7. But it’s
a little hard to figure out which method is the most effective as there are
somany curves. So, we evaluate testing results to show their differences
in Table 1.
Table 1 shows thatmodels usingNHITS are themost effective among

all prediction methods, with the best performance in point prediction
metrics when SCADA is not input and the optimal probability predic‐
tionmetrics when SCADA is input. The metric performance for the TCN
model improves across the board with the inclusion of SCADA data as
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F I GUR E 7 Model comparison with or without SCADA.

exogenous variables. There’s a marked decrease in point prediction ac‐
curacy for the GRUmodel when incorporating SCADA data. Meanwhile,
the performance of NBEATS and NHITS remains hardly unaffected by
the presence or absence of SCADA data. As for the significance test,
NBEATS and NHITS almost show no significant difference between the
two conditions and both pass the Wilcoxon Signed‐rank Test (α=0.05)
under two conditions.
Also, we calculate the rate improvement of each model’s metrics us‐

ing the TCN without the SCADA data model as a baseline, which is
shown in Table 2 and Figure 8.

F I GUR E 8 Radar chart of the metric improvement.

In the radar chart, each axis represents the improvement ratio of an
evaluationmetric, with higher values being better. A larger polygon area
indicates better overall performance of the model. The predictive per‐
formance of NHITS is almost consistent regardless of the use of SCADA
data, making it the best; the predictive performance of NBEATS is also
nearly consistent whether or not SCADA data is used. While its point
forecast evaluation metrics are close to those of NHITS, it is inferior to
NHITS in probabilistic forecast evaluation metrics. GRU’s performance
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TAB L E 1 Evaluation of testing results with or without SCADA data under different prediction methods.

Data Input Model MSE MAE ACE PIAW WS Wilcoxon Signed‐rank
Test p‐value α = 0.05 Pass Y/N

Without SCADA

TCN 3834.23 43.11 120.79 118.55 123.04 2.43e‐1 Y
GRU 216.44 10.79 48.92 47.76 50.08 3.29e‐7 N

NBEATS 216.55 11.14 80.17 79.26 81.03 4.39e‐1 Y
NHITS 166.41 9.54 39.40 38.50 40.30 3.58e‐1 Y

With SCADA

TCN 1087.18 26.04 62.22 52.71 71.72 3.88e‐66 N
GRU 1016.69 24.35 49.23 41.91 56.54 3.48e‐9 N

NBEATS 219.82 11.27 79.96 78.89 81.02 7.75e‐1 Y
NHITS 170.43 9.72 37.05 36.19 37.92 1.63e‐1 Y

TAB L E 2 Metric improvement of each model compared by TCN without SCADA.

Data Input Model MSE MAE ACE PIAW WS

Without SCADA

TCN 0.00% 0.00% 0.00% 0.00% 0.00%
GRU 94.36% 74.97% 59.50% 59.71% 59.30%

NBEATS 94.35% 74.16% 33.63% 33.14% 34.14%
NHITS 95.66% 77.87% 67.38% 67.52% 67.25%

With SCADA

TCN 71.65% 39.60% 48.49% 55.54% 41.71%
GRU 73.48% 43.52% 59.24% 64.65% 54.05%

NBEATS 94.27% 73.86% 33.80% 33.45% 34.15%
NHITS 95.56% 77.45% 69.33% 69.47% 69.18%

without using SCADA data is still quite close to NHITS, but introducing
SCADA data during model training worsens its performance.
Since the introduction of SCADA data in this study cannot stably and

effectively improve the forecast accuracy and causes a large amount of
computing resource consumption, the follow‐up study excludes SCADA
data, relying solely on wind power data. Moreover, since NHITS is an
evolution of NBEATS and has been proven to outperform NBEATS, the
follow‐up study excludes NBEATS to reduce redundant work.

4.3.2 Compare SD approach combined
neural forecast models

In addition to the previously mentioned SD approaches, a 5th‐order
Butterworth low‐pass filter is also used as a comparison model, sep‐
arating low‐frequency and high‐frequency components with a cutoff
frequency of 0.2 mHz. The prediction results of forecasting methods
based on Filter‐TCN, Filter‐GRU, Filter‐NHITS, EMD‐TCN, EMD‐GRU,
EMD‐NHITS, VMD‐TCN, VMD‐GRU, and VMD‐NHITS are shown in
Figure 9. As observed from Figure 9, VMD‐NHITS exhibits the closest
alignment with the original wind power data, especially in the peak and
valley. And it has the narrowest bandwidth in probability prediction.
The evaluation metrics are presented in Table 3. By comparing

Table 1 and Table 3, we can conclude that after VMD, the final aggre‐
gated results outperform the non‐decomposed approach in terms of
probabilistic prediction metrics, regardless of which neural network is
used for point prediction on the low‐frequency components and prob‐
abilistic prediction on the high‐frequency components. What’s more,

Table 3 also indicates that VMD‐NHITS does not show significant im‐
provement in point forecasting metrics compared to Filter‐NHITS but
shows the minimum values for the probability prediction evaluation
metrics, suggesting its optimal probability prediction performance. The
rough use of EMD in this experiment does not help improve the ac‐
curacy of the prediction. As for the significance test, only Filter‐TCN,
Filter‐NHITS and VMD‐NHITS pass the Wilcoxon Signed‐rank Test
(α=0.05). By contrast, all the failures of EMD in significance testing con‐
firm that VMDofwind power is more adaptive to its characteristics than
EMD.
Themetric improvement compared to TCNwithout SCADA is shown

in Table 4 and a radar chart displaying the improvement is shown in
Figure 10. TheVMD‐NHITSmodel has the largest coverage area and the
most uniform shape, indicating its superior overall performance. Overall,
these charts showcase that the VMD‐NHITS‐based method for wind
power forecasting is the most accurate and precise, exhibiting minimal
prediction uncertainty, which makes it highly suitable for wind power
prediction in wind farms.

5 CONCLUSIONS

This work presents a novel VMD‐NHITS‐based wind power forecast
method. The method uses the VMD approach to decompose wind
power into low‐frequency and high‐frequency components, then uses
NHITSmodels to produce point and probability forecasts separately and
add up the forecasts to get the final prediction results. After being tested
on the dataset and evaluated by all the metrics, the VMD‐NHITS‐based
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TAB L E 3 Testing results using different SD approach combined methods.

SD approach Model MSE MAE ACE PIAW WS Wilcoxon Signed‐rank
Test p‐value α = 0.05 Pass Y/N

Filter
TCN 2747.66 36.03 59.47 39.45 79.49 1.62e‐1 Y
GRU 575.20 16.95 58.82 56.37 61.26 4.77e‐28 N
NHITS 171.51 9.91 50.03 49.32 50.73 7.17e‐1 Y

EMD
TCN 2049.82 34.39 56.00 35.38 76.61 2.79e‐2 N
GRU 695.59 20.46 40.99 30.32 51.66 2.30e‐6 N
NHITS 580.91 18.10 41.20 33.67 48.73 9.37e‐6 N

VMD
TCN 1754.67 27.48 44.43 25.36 63.49 8.15e‐9 N
GRU 568.71 17.07 44.79 38.74 50.84 1.24e‐22 N
NHITS 227.97 11.31 27.18 23.19 31.18 5.82e‐1 Y

TAB L E 4 Metric improvement using different SD approach combined methods compared by TCN without SCADA.

SD approach Model MSE MAE ACE PIAW WS

Filter
TCN 28.34% 16.42% 50.77% 66.72% 35.39%
GRU 85.00% 60.68% 51.30% 52.45% 50.21%
NHITS 95.53% 77.01% 58.58% 58.40% 58.77%

EMD
TCN 46.54% 20.23% 53.64% 70.16% 37.74%
GRU 81.86% 52.54% 66.07% 74.42% 58.01%
NHITS 84.85% 58.01% 65.89% 71.60% 60.39%

VMD
TCN 54.24% 36.26% 63.22% 78.61% 48.40%
GRU 85.17% 60.40% 62.92% 67.32% 58.68%
NHITS 94.05% 73.76% 77.50% 80.44% 74.66%

forecast method has been proven to possess the ability to accurately
forecast the wind power, which will be beneficial and meaningful for
providing a decision‐making basis for generator set control, automatic
power generation control, standby, and other auxiliary service manage‐
ment, real‐time economic scheduling, real‐time safety analysis, conges‐
tion management, power spot market, renewable energy and energy
storage collaborative control, etc.
The limitations of the research are lacking more detailed wind farm

geographical information and feature extraction of SCADA data, and
the power prediction is performed only for typical periods without con‐
sidering extreme weather conditions. Thus, further research can focus
on the following areas:

1. Integration of geographical Information: Incorporate detailed geo‐
graphical information of wind farms as external variables into the
model to further enhance forecasting accuracy.

2. Effective feature extraction from SCADA Data: Explore more effec‐
tive feature extraction methods to improve the utilization efficiency
of SCADA data in wind power forecasting.

3. Enhancing model adaptability: Study the model’s adaptability under
different climatic conditions and geographical locations to improve
its generalisation capability.
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